Biocompatibility of Four Common Orthopedic Biomaterials Following a High-Salt Diet: An In Vivo Study
نویسندگان
چکیده
Nowadays, salt consumption appears to be drastically above the recommended level in industrialized countries. The health consequences of this overconsumption are heavy since high-salt intake induces cardiovascular disease, kidney dysfunction, and stroke. Moreover, harmful interaction may also occur with orthopaedic devices because overconsumption of salt reinforces the corrosive aspect of biological tissues and favors bone resorption process. In the present study, we aimed to assess the in vivo effect of three weeks of a high-salt diet, associated (or not) with two weeks of the neuro-myoelectrostimulation (NMES) rehabilitation program on the biocompatibility of four biomaterials used in the manufacture of arthroplasty implants. Thus, two non-metallic (PEEK and Al₂O₃) and two metallic (Ti6Al4V and CrCo) compounds were implanted in the rat tibial crest, and the implant-to-bone adhesion and cell viability of two surrounded muscles, the Flexor Digitorum (FD) and Tibialis Anterior (TA), were assessed at the end of the experiment. Results indicated lower adhesion strength for the PEEK implant compared to other biomaterials. An effect of NMES and a high-salt diet was only identified for Al₂O₃ and Ti6Al4V implants, respectively. Moreover, compared to a normal diet, a high-salt diet induced a higher number of dead cells on both muscles for all biomaterials, which was further increased for PEEK, Al₂O₃, and CrCo materials with NMES application. Finally, except for Ti6Al4V, NMES induced a higher number of dead cells in the directly stimulated muscle (FD) compared to the indirectly stimulated one (TA). This in vivo experiment highlights the potential harmful effect of a high-salt diet for people who have undergone arthroplasty, and a rehabilitation program based on NMES.
منابع مشابه
A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications.
Polyvinyl alcohol (PVA) is a synthetic polymer derived from polyvinyl acetate through partial or full hydroxylation. PVA is commonly used in medical devices due to its low protein adsorption characteristics, biocompatibility, high water solubility, and chemical resistance. Some of the most common medical uses of PVA are in soft contact lenses, eye drops, embolization particles, tissue adhesion ...
متن کاملCharacterization and In Vitro and In Vivo Assessment of a Novel Cellulose Acetate-Coated Mg-Based Alloy for Orthopedic Applications
Despite their good biocompatibility and adequate mechanical behavior, the main limitation of Mg alloys might be their high degradation rates in a physiological environment. In this study, a novel Mg-based alloy exhibiting an elastic modulus E = 42 GPa, Mg-1Ca-0.2Mn-0.6Zr, was synthesized and thermo-mechanically processed. In order to improve its performance as a temporary bone implant, a coatin...
متن کاملIn Vitro and In Vivo Evaluation of Lyophilized Bovine Bone Biocompatibility
INTRODUCTION The use of bone grafts in orthopedic, maxillofacial and dental surgery has been growing. Nevertheless, both fresh autografts and frozen allografts have limitations, and therefore, alternative synthetic or natural biomaterials, such as processed and lyophilized bovine bone graft have been developed. OBJECTIVE To evaluate in vitro and in vivo biocompatibility of lyophilized bovine ...
متن کاملBiocompatibility of eight different orthodontic materials: in-vivo rat model study
Biocompatibility of eight different orthodontic materials: in-vivo rat modl study Dr. Sadeghian, S.* - Dr. Razavi, S.M. ** - Dr. Masaeli, A.*** *Assistant Professor of Orthodontics Dept., Faculty of Dentistry, Isfahan Azad University (Khorasgan). **Assistant Professor of Pathology Dept., Faculty of Dentistry, Isfahan University of Medical Sciences. ***Dentist. Abstract Background & Aim: Differe...
متن کاملDevelopment of biodegradable polyesterurethane membranes with different surface morphologies for the culture of osteoblasts.
To evaluate the biocompatibility of biodegradable polyesterurethane membranes with different surface morphologies for their possible use as orthopedic biomaterials, rat osteoblasts were cultured on smooth, sunken, and particulate polyesterurethane membranes. A close interaction between cells and exposed particles on the particulate membranes was found. Cells on the particulate surfaces were wel...
متن کامل